p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.89C23, C22.97C25, C23.47C24, C24.138C23, C4.1562+ 1+4, D4⋊5D4⋊21C2, Q8⋊6D4⋊20C2, (C4×D4)⋊48C22, (C2×C4).87C24, C4⋊Q8⋊109C22, (C4×Q8)⋊47C22, C4⋊D4⋊84C22, C4⋊1D4⋊18C22, C4⋊C4.492C23, (C2×C42)⋊62C22, C22≀C2.9C22, (C2×D4).305C23, C4.4D4⋊85C22, (C2×Q8).452C23, C42.C2⋊57C22, C22.29C24⋊25C2, C22.11C24⋊19C2, C22⋊C4.107C23, (C22×C4).368C23, C22.D4⋊9C22, C42⋊C2⋊102C22, C22⋊Q8.228C22, C2.37(C2×2+ 1+4), C22.26C24⋊40C2, (C22×D4).427C22, C22.34C24⋊10C2, C23.37C23⋊40C2, C22.53C24⋊13C2, (C4×C4○D4)⋊29C2, (C2×C4)⋊7(C4○D4), (C2×C4⋊1D4)⋊27C2, C22⋊C4○(C4⋊1D4), C4.180(C2×C4○D4), (C2×C4○D4)⋊34C22, C2.53(C22×C4○D4), C22.30(C2×C4○D4), (C2×C22⋊C4).383C22, SmallGroup(128,2240)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.97C25
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=e2=b, g2=a, ab=ba, dcd-1=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1052 in 616 conjugacy classes, 392 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C4⋊1D4, C4⋊Q8, C22×D4, C2×C4○D4, C2×C4○D4, C4×C4○D4, C22.11C24, C2×C4⋊1D4, C22.26C24, C23.37C23, C22.29C24, C22.34C24, D4⋊5D4, Q8⋊6D4, C22.53C24, C22.97C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C22.97C25
(1 27)(2 28)(3 25)(4 26)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 23)(2 18)(3 21)(4 20)(5 14)(6 9)(7 16)(8 11)(10 32)(12 30)(13 29)(15 31)(17 27)(19 25)(22 26)(24 28)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8 3 6)(2 5 4 7)(9 21 11 23)(10 22 12 24)(13 17 15 19)(14 18 16 20)(25 31 27 29)(26 32 28 30)
(2 28)(4 26)(5 30)(7 32)(10 16)(12 14)(18 24)(20 22)
(1 15 27 9)(2 16 28 10)(3 13 25 11)(4 14 26 12)(5 20 30 22)(6 17 31 23)(7 18 32 24)(8 19 29 21)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,23)(2,18)(3,21)(4,20)(5,14)(6,9)(7,16)(8,11)(10,32)(12,30)(13,29)(15,31)(17,27)(19,25)(22,26)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,3,6)(2,5,4,7)(9,21,11,23)(10,22,12,24)(13,17,15,19)(14,18,16,20)(25,31,27,29)(26,32,28,30), (2,28)(4,26)(5,30)(7,32)(10,16)(12,14)(18,24)(20,22), (1,15,27,9)(2,16,28,10)(3,13,25,11)(4,14,26,12)(5,20,30,22)(6,17,31,23)(7,18,32,24)(8,19,29,21)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,23)(2,18)(3,21)(4,20)(5,14)(6,9)(7,16)(8,11)(10,32)(12,30)(13,29)(15,31)(17,27)(19,25)(22,26)(24,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,3,6)(2,5,4,7)(9,21,11,23)(10,22,12,24)(13,17,15,19)(14,18,16,20)(25,31,27,29)(26,32,28,30), (2,28)(4,26)(5,30)(7,32)(10,16)(12,14)(18,24)(20,22), (1,15,27,9)(2,16,28,10)(3,13,25,11)(4,14,26,12)(5,20,30,22)(6,17,31,23)(7,18,32,24)(8,19,29,21) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,23),(2,18),(3,21),(4,20),(5,14),(6,9),(7,16),(8,11),(10,32),(12,30),(13,29),(15,31),(17,27),(19,25),(22,26),(24,28)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8,3,6),(2,5,4,7),(9,21,11,23),(10,22,12,24),(13,17,15,19),(14,18,16,20),(25,31,27,29),(26,32,28,30)], [(2,28),(4,26),(5,30),(7,32),(10,16),(12,14),(18,24),(20,22)], [(1,15,27,9),(2,16,28,10),(3,13,25,11),(4,14,26,12),(5,20,30,22),(6,17,31,23),(7,18,32,24),(8,19,29,21)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2O | 4A | ··· | 4P | 4Q | ··· | 4AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C22.97C25 | C4×C4○D4 | C22.11C24 | C2×C4⋊1D4 | C22.26C24 | C23.37C23 | C22.29C24 | C22.34C24 | D4⋊5D4 | Q8⋊6D4 | C22.53C24 | C2×C4 | C4 |
# reps | 1 | 1 | 2 | 1 | 4 | 1 | 2 | 4 | 8 | 4 | 4 | 8 | 4 |
Matrix representation of C22.97C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
C22.97C25 in GAP, Magma, Sage, TeX
C_2^2._{97}C_2^5
% in TeX
G:=Group("C2^2.97C2^5");
// GroupNames label
G:=SmallGroup(128,2240);
// by ID
G=gap.SmallGroup(128,2240);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,352,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=e^2=b,g^2=a,a*b=b*a,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations